
COBRA: Enhancing DNN Latency Prediction 
with Language Models trained on Source Code

Why do we need DNN latency prediction?
Deep learning methods have had tremendous success for a variety of 
applications.  A major challenge of this field is the development of efficient 
Deep Neural Network (DNN) architectures that can also be deployed 
on mobile devices or on embedded platforms with restricted memory or 
computational power. When tailoring DNN architectures to a specific target 
device, deep learning engineers typically require knowledge of the DNN 
latency. Simply deploying a DNN and measuring its latency requires a lot of 
manual effort. Many methods for DNN latency prediction have been 
proposed, but often struggle to generalize well to different types of DNN 
architectures. We therefore introduce COBRA to alleviate this issue.

Our pre-training setup uses a combination of self-supervised and 
supervised training to learn embeddings that are suited for latency 
prediction. For the self-supervised part the encoder is pre-trained to predict 
masked input tokens. This way, the transformer encoder learns to capture 
the properties of dependence in single layer implementations and learns to 
act as a language model for source code. We append the tokenized 
measured latency of the layer implementations to make the layer 
parameters interdependent. Simultaneously, the transformer also learns to 
predict the latency of the layer in a supervised way.

• The Interpreter: is a rule-based module. It identifies and extracts all layer 
implementations, that are single function calls to a deep learning toolbox. It 
provides two outputs:

1) The set of layer source code implementations.
2) An adjacency matrix that encodes the dependencies between the 

layer implementations.
• The Transformer encoder: processes each of the layer implementations 

individually and outputs a corresponding embedding and latency. The 
architecture is similar to BERT. We use a specific training scheme, 
described in the next section.

• GCN: combines the output of the transformer encoder with the adjacency 
matrix and calculates a latency estimate for the full DNN.

Overview of COBRA 🐍

Dataset
We collect a dataset of 2000 random ResNet-like models, allowing 
skip-connections between neighbouring, but also between any two arbitrary 
network layers. The number of network layers is random, but is never larger 
than 226. Also the individual layer types and their configuration are chosen 
randomly.
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Results

Pre-training the Transformer encoder

Code Based Runtime Approximation (COBRA)

DNN latency predictors aim at predicting the DNN inference time, namely the latency.

We propose a novel and flexible method to predict the latency of DNNs 
using layer representations extracted from source code. Our method, 
COBRA, interprets the source code to extract the corresponding network 
graph and layer implementations. The layer implementations consists of 
small code snippets with function calls to a deep learning framework. 
Second, it uses a transformer encoder to embed each layer implementation 
into a representation that is well suited for latency estimation. We propose 
a special training trick for the transformer encoder that enables us to 
learn source code embeddings that are especially convenient for DNN 
latency prediction. Finally, these extracted layer representations are 
aggregated by a Graph Convolutional Network (GCN) that captures the data 
dependencies between the function calls and estimates the latency of the 
DNN.

We train the transformer with a procedure combining self-supervised and supervised 
learning, reducing the average perplexity of the transformer by a factor of 2.

Cobra estimates the latency of a DNN from its source code representation. 

We compare then the performance of COBRA to the following two other 
methods for DNN latency prediction using the dataset described previously:

1) The Layer-wise sum predictor that estimates the latency of a DNN 
by summing up the measured latencies of the individual network layers. 
It is also calibrated by a scaling factor to fit the latencies in the training 
set.
2) BRP-NAS [1], a GCN based predictor which is state-of-the-art in 
latency prediction. To adapt this predictor to our more general dataset, 
we use hand-crafted layer representations, consisting of the one-hot 
encoded layer type and all the layer parameters. This representation is 
proposed by Zhang et al. in [2].

Our code based method beats BRP-NAS, the state-of-the-art in DNN latency prediction.

For each method we compute the mean 
absolute percentage error (MAPE), the 
root mean square error (RMSE), as well 
as different error bounds. COBRA clearly 
outperforms the other baselines, 
achieving state-of-the-art results.

We first show how accurate the transformer encoder alone can predict the 
latency of single layers from their source code implementation. We observe 
that the transformer encoder can accurately predict the latency of 
unseen layer implementations, and can interpolate and extrapolate 
between layers of very different parameterizations, benefiting from the 
pre-training setup.


