COBRA: Enhancing DNN Latency Prediction
with Language Models trained on Source Code

Why do we need DNN latency prediction?

Deep learning methods have had tremendous success for a variety of
applications. A major challenge of this field is the development of efficient
Deep Neural Network (DNN) architectures that can also be deployed
on mobile devices or on embedded platforms with restricted memory or
computational power. When tailoring DNN architectures to a specific target
device, deep learning engineers typically require knowledge of the DNN
latency. Simply deploying a DNN and measuring its latency requires a lot of
manual effort. Many methods for DNN latency prediction have been
proposed, but often struggle to generalize well to different types of DNN
architectures. We therefore introduce COBRA to alleviate this issue.

10 ms .
Latgncy e a
predictor

4 ms =
DNN := (4,X)

DNN latency predictors aim at predicting the DNN inference time, namely the latency.

Code Based Runtime Approximation (COBRA)

We propose a novel and flexible method to predict the latency of DNNs
using layer representations extracted from source code. Our method,
COBRA, interprets the source code to extract the corresponding network
graph and layer implementations. The layer implementations consists of
small code snippets with function calls to a deep learning framework.
Second, it uses a transformer encoder to embed each layer implementation
into a representation that is well suited for latency estimation. We propose
a special training trick for the transformer encoder that enables us to
learn source code embeddings that are especially convenient for DNN
latency prediction. Finally, these extracted layer representations are
aggregated by a Graph Convolutional Network (GCN) that captures the data
dependencies between the function calls and estimates the latency of the
DNN.

Dataset

We collect a dataset of 2000 random ResNet-like models, allowing
skip-connections between neighbouring, but also between any two arbitrary
network layers. The number of network layers is random, but is never larger
than 226. Also the individual layer types and their configuration are chosen
randomly.

Robin Zbinden, robin.zbinden@epfl.ch
Lukas Mauch, lukas.mauch@sony.com
Fabien Cardinaux, fabien.cardinaux@sony.com

Overview of COBRA -

class DNN(..): DNN connectivity

def __init _(«): Predicted

latency

Interpreter

def forward(..):
X = €onv(..)
x = ReLU(..)

X = MaxPool(...)
return Xx

C;: “Convi{..)”

. C,: “ReLU(...)" N Transformer

DNN code encoder

Layer code segmentation

Feature matrix

Cobra estimates the latency of a DNN from its source code representation.

 The Interpreter: is a rule-based module. It identifies and extracts all layer
implementations, that are single function calls to a deep learning toolbox. It
provides two outputs:

1) The set of layer source code implementations.
2) An adjacency matrix that encodes the dependencies between the
layer implementations.

e The Transformer encoder: processes each of the layer implementations
individually and outputs a corresponding embedding and latency. The
architecture is similar to BERT. We use a specific training scheme,
described in the next section.

e GCN: combines the output of the transformer encoder with the adjacency
matrix and calculates a latency estimate for the full DNN.

Pre-training the Transformer encoder

Our pre-training setup uses a combination of self-supervised and
supervised training to learn embeddings that are suited for latency
prediction. For the self-supervised part the encoder is pre-trained to predict
masked input tokens. This way, the transformer encoder learns to capture
the properties of dependence in single layer implementations and learns to
act as a language model for source code. We append the tokenized
measured latency of the layer implementations to make the layer
parameters interdependent. Simultaneously, the transformer also learns to
predict the latency of the layer in a supervised way.

MLP
FUHELIAN Tokeni regressor
okenizer |
calls Cn T Transformer
Positional encoder
Encoding (4 layers)
Latency e

tn classifier

We train the transformer with a procedure combining self-supervised and supervised
learning, reducing the average perplexity of the transformer by a factor of 2.

Results

We first show how accurate the transformer encoder alone can predict the
latency of single layers from their source code implementation. We observe
that the transformer encoder can accurately predict the latency of
unseen layer implementations, and can interpolate and extrapolate
between layers of very different parameterizations, benefiting from the
pre-training setup.

error bound (%)
Type MAPE RMSEms) | 41, 150 +10% +25%
Convolution 0.28 1.01 2.41 1317 26.72 B7.61
BatchNormalization 0.06 0.21 9.50 54.96 &86.36 98.45
ReLU 0.05 0.23 11.46 56.35 90.56 100.0
Add 0.06 D27 10.0 49.0 &81.0 100.0
Linear 0.022 0.001 31.31 94.44 98.48 100.0
AveragePooling 0.09 0.52 5.26 4737 6842 97.37
MaxPooling 0.09 0.23 10.0 35.0 60.0 100.0
GlobalAveragePooling | 0.06 5.19 11.11 51.39 84.72 99.31
All (.15 0.88 8.62 40.26 61.07 81.44

We compare then the performance of COBRA to the following two other

methods for DNN latency prediction using the dataset described previously:
1) The Layer-wise sum predictor that estimates the latency of a DNN
by summing up the measured latencies of the individual network layers.
It is also calibrated by a scaling factor to fit the latencies in the training
set.
2) BRP-NAS [1], a GCN based predictor which is state-of-the-art in
latency prediction. To adapt this predictor to our more general dataset,
we use hand-crafted layer representations, consisting of the one-hot
encoded layer type and all the layer parameters. This representation is

proposed by Zhang et al. in [2].

COBRA
100

For each method we compute the mean _ Eﬁbgg/:d=

absolute percentage error (MAPE), the §8° W 10%

root mean square error (RMSE), as well § ©

as different error bounds. COBRA clearly ?E 40

outperforms the other baselines, % 20

achieving state-of-the-art results. =

" Predicted latency (ms)

method MAPE RMSE (ms) | ;g e“‘ig%und (%) .
Layer-wise sum | 0.0807 3.54 15.2 51.8 78.0
BRP-NAS 0.0358+7e-3 13.34+3.4 26.1£5.8 81.947.6 93.4+3.1
COBRA (Ours) | 0.0165+1e-3 6.89+1.9 45.3+2.7 96.2+1.6 99.0+0.4

Our code based method beats BRP-NAS, the state-of-the-art in DNN latency prediction.

References:
[1] Dudziak et al. “Brp-nas: Prediction-based nas using gcns”, 2020

[2] Zhang et al. “nn-meter: Towards accurate latency prediction of
deep-learning model inference on diverse edge devices.”, 2021

