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Introduction to Species Distribution Models (SDMs)

> Relate species occurrence data with environmental variables

> Used to understand and predict the geographic distribution of a species

> Used to support decision-making for conservation and restoration

Species occurrence data

@-, {3} Presence-absence data: systematic field
surveys

@-, @-, Presence-only data: incidental
observations, combined with generated negative

Environmental variables

@® @ Climate, soil and topography
Y & Vegetation indices, land use,
land cover

@ <Y Remote sensing imagery

Models

@ Traditional statistical methods
B ML methods

@ Neural networks, deep learning

Environmental conditions in
geographical location
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Single-species model: binary classification
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How do neural networks perform compared to well-established methods for SDMs? \\!"\\&gﬂ“\‘v{;

Dataset: benchmark dataset [1]: tabular data for 225 species from 6 regions. Train on presence-only, test on presence-absence. L SRS
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Model: multi-layer perceptrons (MLPs) with: \\V.;,,“\“//'&‘
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Switzerland (SW1) - ?’ A Mean AUROC across species for each region More complex deep learning based SDMs involving and combining:
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/’ i i e | AWT CAN NSW NZ SA SWI Multi-modal data providing, for example, geospatial and temporal context
/ s MaxEnt 0.686 0584 0.713 0.738 0.804 0.809 i
. XGBoost 0.653 0568 0.706 0.720 0.788 0.815
Ontario, CIRAAaNEAN) s 2J9 Random Forest | 0.675 0572 0718 0746 0813 0.818 M
& n=20 , . _ o Ensemble 0.683 0.580 0.723 0.749 0.806 0.812 i
Australian Wet Tropics (AWT) . Single-species MLP | 0.666 0.589 0.688 0.715 0.799 0.808 '
T 8 & n=40 K Ours = Multi-species MLP | 0.617 0.605 0.708 0.714 0.803 0.815

K] * Biological and ecological information through knowledge-guided machine
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South American countries (SA) performs better
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