

MaskSDM: Adaptive species distribution modeling through data masking

Robin Zbinden (EPFL)

Nina van Tiel (EPFL)

Gencer Sümbül (EPFL)

Benjamin Kellenberger (UCL)

Devis Tuia (EPFL)

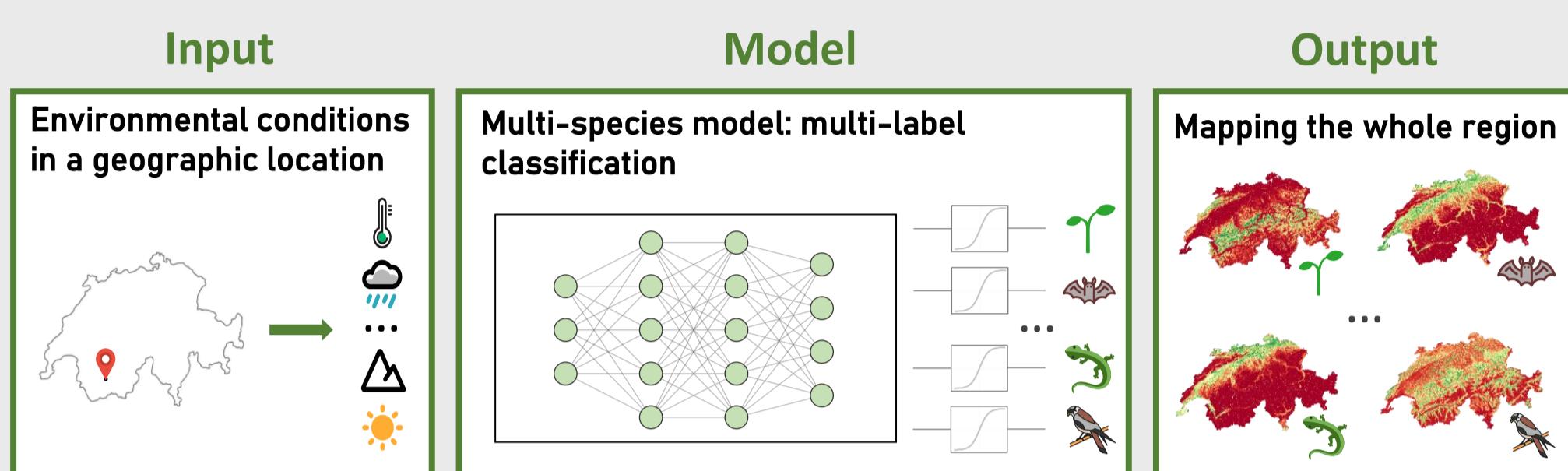
EPFL UCL

egeo

Swiss National Science Foundation

1. Species Distribution Models (SDMs)

- Relate species occurrence data with environmental variables.
- Numerous applications to understand the: geographic distribution of a species, ecological niche, impact of climate change on biodiversity, and spread of invasive species.
- Support decision-making for conservation and restoration.

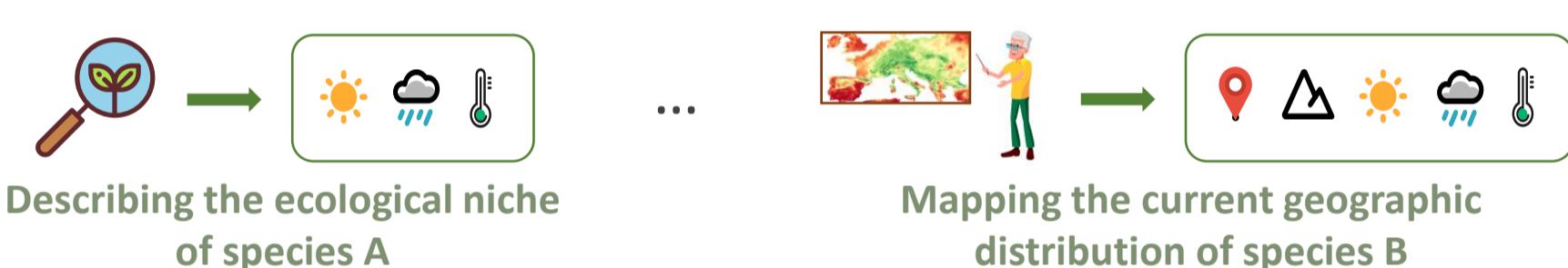


Critical aspect: the selection of appropriate environmental variables

2. Challenges with variable selection

Enabling flexibility for end-users

- Previous multi-species models use the same variables for all species, despite **differing needs**.
- **Different research questions** require different sets of input variables.



Analysis of variable contributions

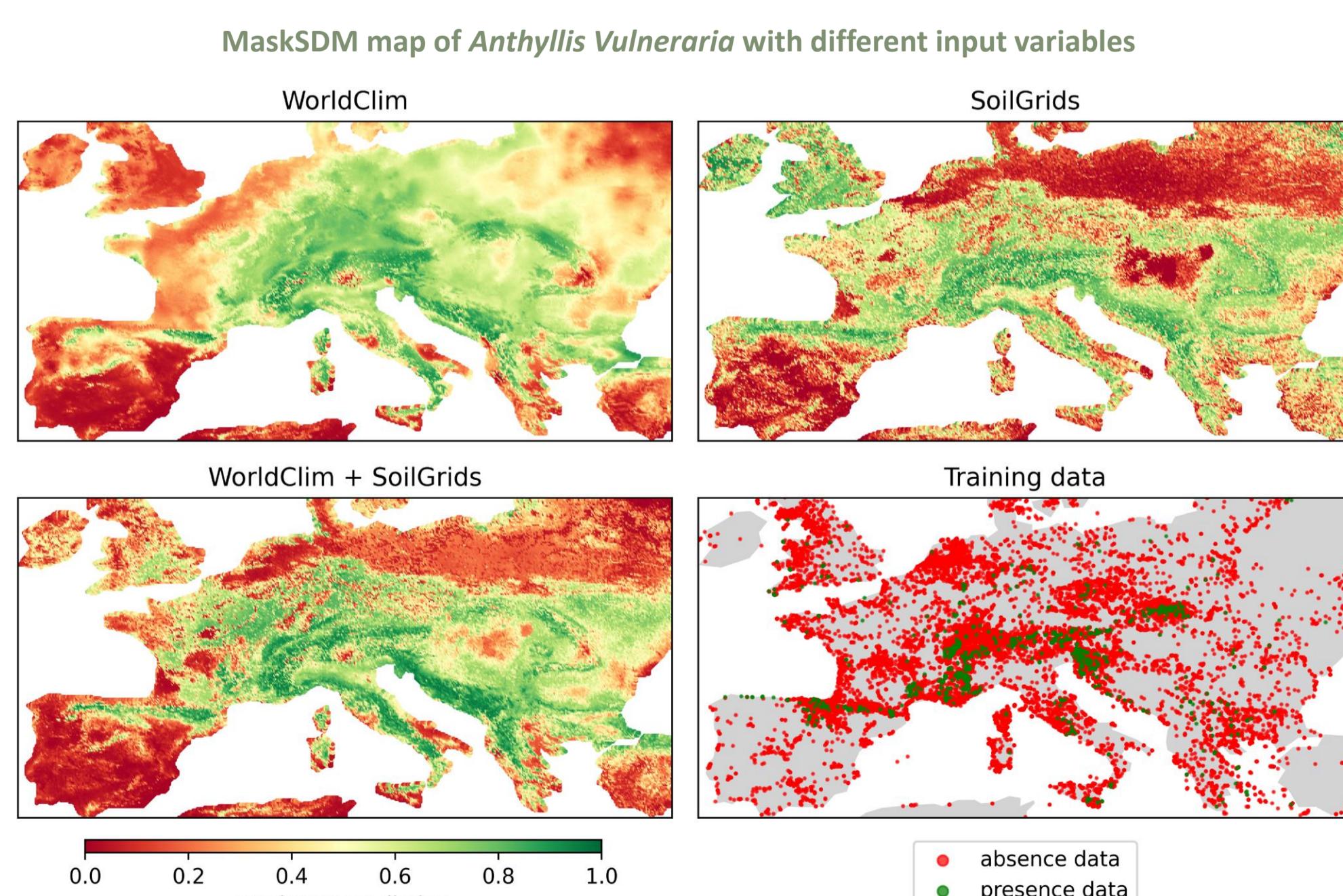
- Identifying which variables influence predictions and performance helps gain ecological insights.
- Traditional ablation studies require retraining multiple times.

Handling missing or noisy variables

- Geospatial data usually contains many samples with **missing variables**.
- **Geographic biases** can lead to **noisy, unreliable data** in certain areas.
- **Meta-data**, though highly predictive, is **inconsistently available**.

4. Experiments and Results

- We train and evaluate our approach on the global **sPlotOpen** dataset which includes presence-absence observations of plants species.
- We split the data using **spatial block cross-validation**.
- MaskSDM is assessed with **various groups of input variables**.
- Baseline models handle missing data using **mean imputation**.
- Evaluation metric: **Mean AUC across all species**.

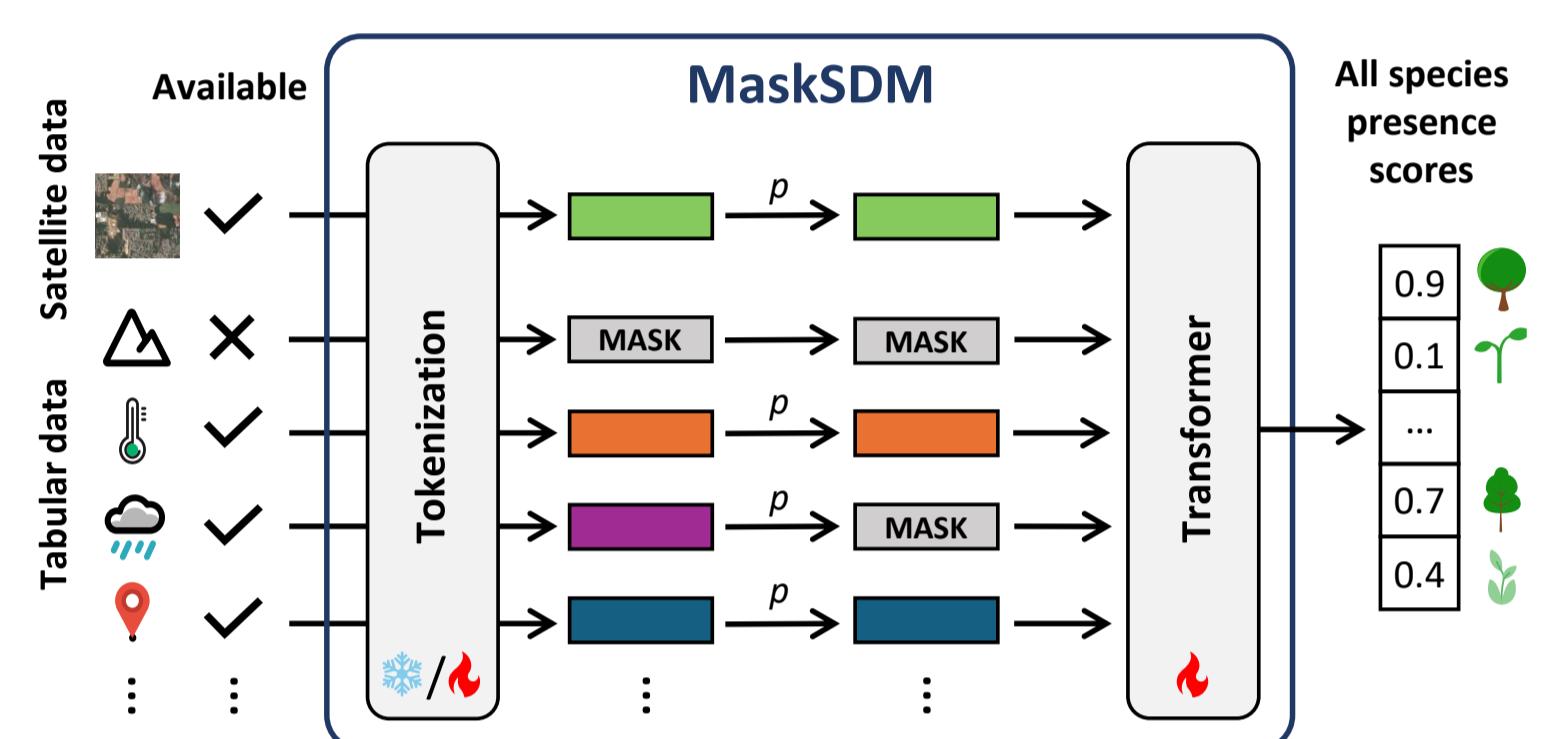


3. Our approach

- **MaskSDM:**
 - Enables the **selection of relevant variables during inference**
 - Offers **insights into variable contributions to predictions and performance**
 - Effectively **handles missing data** during both training and inference.
- It uses **supervised masked data modeling**.
- Each modality/variable is **independently tokenized** and then **input into a Transformer encoder**.

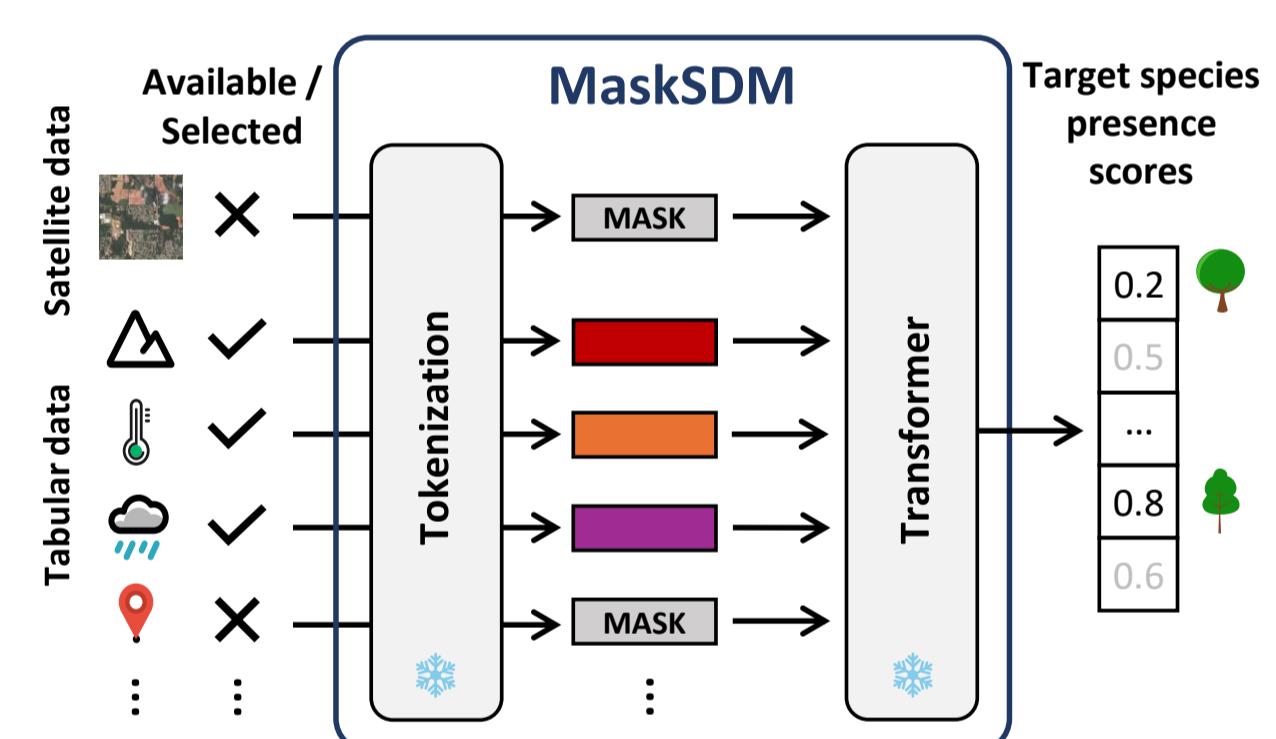
Training

- We use a **mask token** to indicate missing input variables to the Transformer.
- Additionally, this mask token is used to **randomly mask** each input variable with a **varying probability p** , enhancing robustness to any subset of variables.

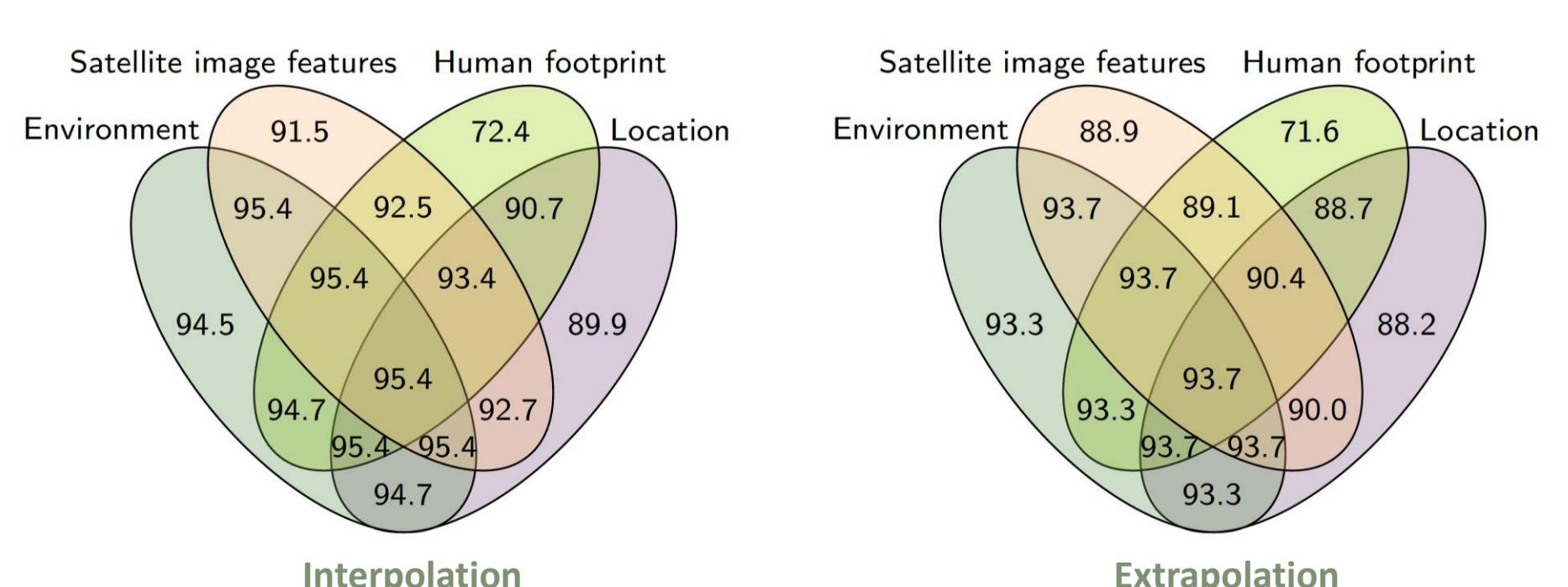


Inference

- MaskSDM can take any subset of variables as input to predict the presence of target species.
- Missing or undesired variables are replaced by the mask token.



Method	Input Variable (#)	Avg. Temperature (1)	WorldClim (19)	SoilGrids (8)	Topographic (3)	Location (2)	Human footprint (9)	Plot metadata (20)	Satellite image features	
MLP		69.9	75.5	N/A	88.1	89.0	89.7	91.1	91.2	91.5 N/A
ResNet		72.5	80.7	N/A	87.3	90.7	91.5	93.4	93.4	94.7 N/A
FTTransformer		72.2	75.3	70.2	82.1	86.0	87.3	91.8	91.9	93.7 94.3
MaskSDM (ours)		80.3	88.2	88.9	91.6	92.6	93.3	93.3	93.4	94.7 94.8



Conclusions

- MaskSDM consistently outperforms the baselines, with the performance gap widening as fewer variables are available.
- Environmental variables alone provide strong performance. Adding human footprint and location data offers little improvement when combined with other variables.
- MaskSDM can take any subset of variables as input.